手机版

百分数怎么算最简单的(百分数问题,再也难不倒你了)

100次浏览     发布时间:2024-11-13 08:01:20    

百分数是在学生学过整数、小数、分数,特别是解决“求一个数是另一个数几分之几”问题的基础上进行的教学,这一内容是学习百分数与分数,小数互化和用百分数知识解决问题的基础,是小学数学中重要的基础知识之一。

百分数在学生生活社会生产中有着广泛的应用,大部分学生都直接或间接的接触过一些简单的百分数,对百分数有了一些零散的感性认识,所以在教学中应该从学生实际入手,让学生在生活实例中感知并能正确地运用它解决实际问题,真正体会“数学来源于生活,又应用于生活”。

现在开始今天的讲解!

一、知识储备

1、百分数的意义:表示一个数是另一个数的百分之几。

(千分数的意义:表示一个数是另一个数的千分之几)

2、百分数和分数的区别:

①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;

分数的分子不能是小数,只能是除0以外的自然数。

3、百分数与小数的互化:

(1)小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

(2) 百分数化成小数:把小数点向左移动两位,同时去掉百分号

4、百分数的和分数的互化

(1)百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分

(2)分数化成百分数

① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数

二、用百分数解决问题

(一)一般应用题

2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:

数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”:单位“1”的量×分率=分率对应量 10的10%是多少

(2)分率前是“多或少” :单位“1”的量×(1+—分率)=分率对应量 比10多(少)10%

3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。

解法:(建议:最好用方程解答)

(1)方程: 根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量

4、求一个数比另一个数多(少)百分之几的问题:

两个数的相差量÷单位“1”的量 × 100% 或: 求多百分之几:(大数÷小数 – 1) × 100%

② 求少百分之几:( 1 - 小数÷大数)× 100%

(二)、折扣

1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。

几折就表示十分之几,也就是百分之几十。例如八折==80﹪,六折五=0.65=65﹪

2、 一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%

(三)、纳税

1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

3、应纳税额:缴纳的税款叫做应纳税额。

4、税率:应纳税额与各种收入的比率叫做税率。

5、应纳税额的计算方法:应纳税额 = 总收入 × 税率

(四)利息

1、存款分为活期、整存整取和零存整取等方法。

2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

3、本金:存入银行的钱叫做本金。

4、利息:取款时银行多支付的钱叫做利息。

5、利率:利息与本金的比值叫做利率。

6、利息的计算公式:利息=本金×利率×时间

7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

三、典型例题(一)

例1、(解决“求一个数比另一个数多百分之几”的实际问题)

向阳客车厂原计划生产客车5000辆,实际生产5500辆。实际比计划多生产百分之几?

分析与解:要求“实际比计划多生产百分之几”,就是求实际比计划多生产的辆数占计划产量的百分之几,把原计划产量看作单位“1”。两者之间的关系可用线段图表示。

解答:

方法1:

5500 – 5000 = 500(辆) …… 实际比计划多生产500辆

500 ÷ 5000 = 0.1 = 10% …… 实际比计划多生产百分之几

方法2:

5500 ÷ 5000 = 110% …… 实际产量相当于原计划的110%

110% - 100% = 10% …… 实际比计划多生产百分之几

答:实际比计划多生产10%。

例2、(解决“求一个数比另一个数少百分之几”的实际问题)

向阳客车厂原计划生产客车5000辆,实际生产5500辆。计划比实际少生产百分之几?

分析与解:要求“计划比实际少生产百分之几”,就是求计划比实际少生产的辆数占实际产量的百分之几,把实际产量看作单位“1”。两者之间的关系可用线段图表示。

解答:

方法1:

5500 – 5000 = 500(辆) …… 计划比实际少生产500辆

500 ÷ 5500 ≈ 9.1% …… 计划比实际少生产百分之几

方法2:

5500 ÷ 5500 ≈ 90.9% …… 计划产量相当于实际的90.9%

100% - 90.9% ≈ 9.1% …… 计划比实际少生产百分之几

答:计划比实际少生产9.1%。

总结:想一想,在分数乘法应用题中的最基本的数量关系式:“单位1 × 分率 = 分率对应的量”,如果和百分数应用题结合起来,求一种量比另一种量多(少)百分之几,实际上就是求分率。就用“多(少)的量 ÷ 单位1”。

例3、(难点突破)

一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻20%

分析与解:苹果比梨重20%,表示苹果比梨重的部分占梨的20%,把梨的质量看作单位“1”;而梨比苹果轻20%则表示梨比苹果轻的部分占苹果的20%,把苹果的质量看作单位“1”,两个单位“1”不同,切忌将两个问题混为一谈。一筐苹果比一筐梨重20%,是把梨看作单位“1”,梨有100份,苹果就是100 + 20 = 120份;一筐梨比一筐苹果轻百分之几 = 一筐梨比一筐苹果轻的部分 ÷ 苹果 = (120 - 100)÷ 120≈16.7%

答:一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻16.7%

总结:在求一个数比另一个数多(少)百分之几的百分数应用题中,关键还是要找准单位“1”的量。从结论可以得出“一个数比另一个数多百分之几,另一个数就比一个数少百分之几。”这句话是错的。为什么呢?把两个百分之几比较一下,就可以得出这两个百分之几对应的量是一个数比另一个数多的量或另一个数比一个数少的量,而这两种说法是相同的,也就表示的是同一个量;而单位“1”一个是梨,一个是苹果,所以这两个百分之几是不可能相等的。

例4、(考点透视)

一种电子产品,原价每台5000元,现在降低到3000元。降价百分之几?

分析与解:降低到3000元,即现价为3000元,说明降低了2000元。求降价百分之几,就是求降低的价格占原价的百分之几。

5000 – 3000 = 2000(元)

2000 ÷ 5000 = 40%

答:降价40﹪。

例5、(考点透视)

一项工程,原计划10天完成,实际8天就完成了任务,实际每天比原计划多修百分之几?

分析与解:根据“原计划10天完成”,可以得到:原计划每天完成这项工程的1/10 ;根据“实际8天完成”,可以得到:实际每天完成这项工程的 1/8。用“实际比原计划每天多完成的量 ÷ 原计划每天完成的量”,就可以求出实际每天多修百分之几。

( 1/8 - 1/10 ) ÷1/10 = 25%

答:实际每天比原计划多修25%。

点评:找准解决问题的数量关系式是解答好这一题的关键,题目中要求的是每天完成的任务量,而不能用10和8去求,因为10和8是工作时间,在解答时容易发生错误。

例6、(应纳税额的计算方法)

益民五金公司去年的营业总额为400万元。如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?

分析与解:如果按营业额的3%缴纳营业税,是把营业额看作单位“1”。 缴纳营业税占营业额的

3%,即400万元的3%。求一个数的百分之几是多少,也用乘法计算。计算时可将百分数化成分数或小数来计算。

400×3% = 400×3/100 = 12(万元)

或400×3% = 400×0.03 = 12(万元)

答:去年应缴纳营业税12万元。

点评:在现实社会中,各种税率是不一样的。应纳税额的计算从根本上讲是求一个数的百分之几是多少。

例7、(和应纳税额有关的简单实际问题)

王叔叔买了一辆价值16000元的摩托车。按规定,买摩托车要缴纳10%的车辆购置税。王叔叔买这辆摩托车一共要花多少钱?

分析与解:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。

方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元)

方法2:16000 ×(1 + 10%) = 16000 ×1.1 = 17600(元)

答:王叔叔买这辆摩托车一共要花17600元钱。

例8、扬州某风景区20018年“十一”黄金周接待游客9万人次,门票收入达270

万元。按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。

分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%

答:“十一”黄金周期间应缴纳营业税13.5万元。

四、课后练习

1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?

2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。实际比计划多生产了百分之几?

3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家比小明家八月份节约用电百分之几?

4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。比计划超产百分之几?

5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增值税。一共要缴纳多少万元的增值税?

6、爸爸买了一辆价值12万元的家用轿车。按规定需缴纳10%的车辆购置税。爸爸买这辆车共需花多少钱?


相关文章:

大清宣统二年老照片:穷人穷得不像样,没有一件完整衣服 12-23

宋朝时期,宋朝对外贸易的特点是什么? 12-23

康熙什么朝代 康熙是清朝皇帝,朱元璋是明朝皇帝,为何康熙要给朱元璋下跪? 12-23

宋朝南宋和南北朝时的南朝宋,谁的地盘大? 12-23

路不拾遗夜不闭户是哪个朝代 ,最理想的社会状态,唐朝是怎么做到的? 12-23

LabVIEW中以文本文件的格式保存与读取方法 12-23

明朝5龙同朝有谁 ,中国历史上唯一一次“五龙同朝”,看完才知道原来是他们! 12-23

清朝古装女,原来长这样 12-23

僧一行是哪个朝代的 唐朝的僧一行是个奇才,他用这一“绝”招,竟测量出子午线的长度 12-23

浅析宋代宋朝的茶道美学,一起来看看吧 12-23